在各个领域(例如政治,健康和娱乐)中的真实和虚假新闻每天都通过在线社交媒体传播,需要对多个领域进行虚假新闻检测。其中,在政治和健康等特定领域中的虚假新闻对现实世界产生了更严重的潜在负面影响(例如,由Covid-19的错误信息引导的流行病)。先前的研究着重于多域假新闻检测,同样采矿和建模域之间的相关性。但是,这些多域方法遇到了SEESAW问题:某些域的性能通常会以损害其他域的性能而改善,这可能导致在特定领域的表现不满意。为了解决这个问题,我们建议一个用于假新闻检测(DITFEND)的域和实例级传输框架,这可以改善特定目标域的性能。为了传递粗粒域级知识,我们从元学习的角度训练了所有域数据的通用模型。为了传输细粒度的实例级知识并将一般模型调整到目标域,我们在目标域上训练语言模型,以评估每个数据实例在源域中的可传递性,并重新赢得每个实例的贡献。两个数据集上的离线实验证明了Ditfend的有效性。在线实验表明,在现实世界中,Ditfend对基本模型带来了更多改进。
translated by 谷歌翻译
会话推荐系统(CRS)旨在捕获用户的当前意图,并通过实时多转交流交互提供建议。作为人机互动系统,CRS必须改善用户体验。但是,大多数CRS方法忽略了用户体验的重要性。在本文中,我们为CRS提出了两个关键点,以改善用户体验:(1)像人类一样说话,人类可以根据当前的对话环境以不同的风格说话。 (2)识别精细颗粒的意图,即使对于相同的话语,不同的用户也具有多种良好的意图,这与用户的固有偏好有关。根据观察结果,我们提出了一个新颖的CRS模型,即创建的定制对话推荐系统(CCRS),该系统从三个角度从三个角度定制了用户的CRS模型。对于类似人类的对话服务,我们提出了多式对话响应生成器,该响应响应生成器选择了语音发言的上下文感知语言风格。为了提供个性化的建议,我们在用户固有的偏好的指导下从对话上下文中提取用户当前的细粒度意图。最后,为了自定义每个用户的模型参数,我们从元学习的角度训练模型。广泛的实验和一系列分析表明,我们的CCR在推荐和对话服务上的优势。
translated by 谷歌翻译
假新闻的广泛传播越来越威胁到个人和社会。在单个领域(例如政治)上自动假新闻发现已做出了巨大的努力。但是,相关性通常存在于多个新闻领域,因此有望同时检测多个域的假新闻。基于我们的分析,我们在多域假新闻检测中提出了两个挑战:1)域转移,是由域,情感,样式等领域之间的差异引起的。世界分类仅输出一个单个领域标签,而不管新闻文章的主题多样性如何。在本文中,我们提出了一个记忆引导的多视图多域假新闻检测框架(M $^3 $ fend),以应对这两个挑战。我们从多视图的角度对新闻作品进行建模,包括语义,情感和风格。具体而言,我们建议一个域存储库来丰富域信息,该信息可以根据可见的新闻和模型域特征来发现潜在的域标签。然后,以丰富的域信息为输入,域适配器可以从各个域中的新闻的多个视图中适应汇总歧视性信息。对英语和中文数据集进行的大量离线实验证明了M $^3 $ fend的有效性,在线测试在实践中验证了其优势。我们的代码可在https://github.com/ictmcg/m3fend上找到。
translated by 谷歌翻译
大多数真实的知识图(kg)远非完整和全面。这个问题激发了预测最合理的缺失事实以完成给定的kg,即知识图完成(KGC)。但是,现有的kgc方法遇到了两个主要问题,1)虚假负面问题,即,采样的负面培训实例可能包括潜在的真实事实; 2)数据稀疏问题,即真实事实仅解释了所有可能事实的一小部分。为此,我们提出了针对KGC的对抗数据增强(PUDA)的积极未标记的学习。特别是,PUDA针对KGC任务量身定制了正标记的风险估计器,以解决虚假的负面问题。此外,为了解决数据稀疏问题,PUDA通过在积极的无标记的Minimax游戏中统一对抗性培训和积极的未标记学习来实现数据增强策略。现实世界基准数据集的广泛实验结果证明了我们提出的方法的有效性和兼容性。
translated by 谷歌翻译
随着电子商务行业的爆炸性增长,检测现实世界应用中的在线交易欺诈对电子商务平台的发展越来越重要。用户的顺序行为历史提供有用的信息,以区分从常规支付的欺诈性付款。最近,已经提出了一些方法来解决基于序列的欺诈检测问题。然而,这些方法通常遭受两个问题:预测结果难以解释,并且对行为的内部信息的利用不足。为了解决上述两个问题,我们提出了一个分层可解释的网络(母鸡)来模拟用户的行为序列,这不仅可以提高欺诈检测的性能,还可以使推理过程解释。同时,随着电子商务业务扩展到新域名,例如新的国家或新市场,在欺诈检测系统中建模用户行为的一个主要问题是数据收集的限制,例如,非常少的数据/标签。因此,在本文中,我们进一步提出了一种转移框架来解决跨域欺诈检测问题,其旨在从现有域(源域)的知识传输足够的域(源域),以提高新域中的性能(目标域)。我们所提出的方法是一般的转移框架,不仅可以应用于母鸡而且可以在嵌入和MLP范例中应用各种现有模型。基于90个转移任务实验,我们还表明,我们的转移框架不仅可以促进母鸡的跨域欺诈检测任务,而且对于各种现有模型也是普遍的和可扩展的。
translated by 谷歌翻译
虽然无监督的域适应(UDA)算法,即,近年来只有来自源域的标记数据,大多数算法和理论结果侧重于单源无监督域适应(SUDA)。然而,在实际情况下,标记的数据通常可以从多个不同的源收集,并且它们可能不仅不同于目标域而且彼此不同。因此,来自多个源的域适配器不应以相同的方式进行建模。最近基于深度学习的多源无监督域适应(Muda)算法专注于通过在通用特征空间中的所有源极和目标域的分布对齐来提取所有域的公共域不变表示。但是,往往很难提取Muda中所有域的相同域不变表示。此外,这些方法匹配分布而不考虑类之间的域特定的决策边界。为了解决这些问题,我们提出了一个新的框架,具有两个对准阶段的Muda,它不仅将每对源和目标域的分布对齐,而且还通过利用域特定的分类器的输出对准决策边界。广泛的实验表明,我们的方法可以对图像分类的流行基准数据集实现显着的结果。
translated by 谷歌翻译
在图像分类中,获得足够的标签通常昂贵且耗时。为了解决这个问题,域适应通常提供有吸引力的选择,给出了来自类似性质但不同域的大量标记数据。现有方法主要对准单个结构提取的表示的分布,并且表示可以仅包含部分信息,例如,仅包含部分饱和度,亮度和色调信息。在这一行中,我们提出了多代表性适应,这可以大大提高跨域图像分类的分类精度,并且特别旨在对准由名为Inception Adaption Adationation模块(IAM)提取的多个表示的分布。基于此,我们呈现多色自适应网络(MRAN)来通过多表示对准完成跨域图像分类任务,该任向性可以捕获来自不同方面的信息。此外,我们扩展了最大的平均差异(MMD)来计算适应损耗。我们的方法可以通过扩展具有IAM的大多数前进模型来轻松实现,并且网络可以通过反向传播有效地培训。在三个基准图像数据集上进行的实验证明了备的有效性。代码已在https://github.com/easezyc/deep-transfer -learning上获得。
translated by 谷歌翻译
假新闻在各个领域的社交媒体上广泛传播,这导致了政治,灾害和金融等许多方面的现实世界威胁。大多数现有方法专注于单域假新闻检测(SFND),当这些方法应用于多域假新闻检测时,导致不满意的性能。作为新兴领域,多域假新闻检测(MFND)越来越受到关注。但是,数据分布,例如词频率和传播模式,从域变化,即域移位。面对严重领域转变的挑战,现有的假新闻检测技术对于多域场景表现不佳。因此,要求为MFND设计专业型号。在本文中,我们首先为MFND设计了一个带有域名标签的假新闻数据集的基准,即Weibo21,由4,488个假新闻和来自9个不同领域的4,640个真实新闻组成。我们进一步提出了一种通过利用域门来聚合由专家混合提取的多个表示来聚合的多域假新闻检测模型(MDFend)。实验表明,MDFEND可以显着提高多域假新闻检测的性能。我们的数据集和代码可在https://github.com/kennqiang/mdfend-weibo21获得。
translated by 谷歌翻译
许多真实应用程序的预测任务需要在用户的事件序列中模拟多阶特征交互以获得更好的检测性能。然而,现有的流行解决方案通常遭受两个关键问题:1)仅关注特征交互并无法捕获序列影响;2)仅关注序列信息,但忽略每个事件的内部特征关系,因此无法提取更好的事件表示。在本文中,我们考虑使用用户的事件顺序捕获分层信息的两级结构:1)基于基于事件表示的学习有效特征交互;2)建模用户历史事件的序列表示。工业和公共数据集的实验结果清楚地表明,与最先进的基线相比,我们的模式实现了更好的性能。
translated by 谷歌翻译
冷启动问题在推荐系统中仍然是一个非常具有挑战性的问题。幸运的是,冷启动用户在辅助源域中的交互可以帮助目标域中的冷启动推荐。如何将用户的偏好从源域转移到目标域,是跨域推荐(CDR)中的关键问题,这是处理冷启动问题的有希望的解决方案。大多数现有方法模型用于传输所有用户的偏好。直观地,由于偏好因用户对用户而异,不同用户的偏好网桥应该是不同的。在这一行中,我们提出了一个名为个性化用户偏好的小说框架,用于跨域推荐(PTUPCDR)。具体地,学习了与用户特征嵌入的元网络,以生成个性化桥接功能以实现每个用户的个性化的偏好传送。要稳定地学习元网络,我们采用了面向任务的优化过程。利用元生成的个性化桥函数,用户在源域中的偏好嵌入可以转换为目标域,并且变换的用户偏好嵌入可以用作目标域中的冷启动用户的初始嵌入。使用大型现实数据集,我们进行广泛的实验,以评估PTUPCDR对冷启动和热启动阶段的有效性。代码已在https://github.com/easezyc/wsdm2022-ptupcdr中提供。
translated by 谷歌翻译